The LDBC Social Network Benchmark

نویسندگان

چکیده

The Social Network Benchmark's Business Intelligence workload (SNB BI) is a comprehensive graph OLAP benchmark targeting analytical data systems capable of supporting workloads. This paper marks the finalization almost decade research in academia and industry via Linked Data Benchmark Council (LDBC). SNB BI advances state-of-the art synthetic scalable database benchmarks many aspects. Its base sophisticated generator, implemented on distributed infrastructure, that produces social with small-world phenomena, whose value properties follow skewed correlated distributions where values correlate structure. temporal all nodes edges lifespan-based rules skew enabling realistic consistent inserts (recursive) deletes. query exploiting this correlation based LDBC's "choke point"-driven design methodology will entice technical scientific improvements future (graph) systems. includes first adoption "parameter curation" an benchmark, technique ensures stable runtimes variants across different parameter values. Two performance metrics characterize peak single-query (power) sustained concurrent throughput. To demonstrate portability we present experimental results relational DBMS. Note these do not constitute official LDBC Result - only audited can use trademarked term.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benchmarking RDF Query Engines: The LDBC Semantic Publishing Benchmark

The Linked Data paradigm which is now the prominent enabler for sharing huge volumes of data by means of Semantic Web technologies, has created novel challenges for non-relational data management technologies such as RDF and graph database systems. Benchmarking, which is an important factor in the development of research on RDF and graph data management technologies, must address these challeng...

متن کامل

LDBC Graphalytics: A Benchmark for Large-Scale Graph Analysis on Parallel and Distributed Platforms

In this paper we introduce LDBC Graphalytics, a new industrial-grade benchmark for graph analysis platforms. It consists of six deterministic algorithms, standard datasets, synthetic dataset generators, and reference output, that enable the objective comparison of graph analysis platforms. Its test harness produces deep metrics that quantify multiple kinds of system scalability, such as horizon...

متن کامل

analysis of power in the network society

اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...

15 صفحه اول

An RDF Dataset Generator for the Social Network Benchmark with Real-World Coherence

Synthetic datasets used in benchmarking need to mimic all characteristics of real-world datasets, in order to provide realistic benchmarking results. Synthetic RDF datasets usually show a significant discrepancy in the level of structuredness compared to real-world RDF datasets. This structural difference is important as it directly affects storage, indexing and querying. In this paper, we show...

متن کامل

Hycon2 Benchmark: Power Network System

As a benchmark exercise for testing software and methods developed in Hycon2 for decentralized and distributed control, we address the problem of designing the Automatic Generation Control (AGC) layer in power network systems. In particular, we present three different scenarios and discuss performance levels that can be reached using Centralized Model Predictive Control (MPC). These results can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the VLDB Endowment

سال: 2022

ISSN: ['2150-8097']

DOI: https://doi.org/10.14778/3574245.3574270